At Salsa, we believe that a sense of adventure makes life better. The bicycle can be so much more than just a bike; it’s a path to new places, new people, and amazing experiences.

Thank you for your purchase. We hope it makes a good riding experience even better!

Salsa. Adventure by bike®.

⚠️ WARNING: CYCLING CAN BE DANGEROUS. BICYCLE PRODUCTS SHOULD BE INSTALLED AND SERVICED BY A PROFESSIONAL MECHANIC. NEVER MODIFY YOUR BICYCLE OR ACCESSORIES. READ AND FOLLOW ALL PRODUCT INSTRUCTIONS AND WARNINGS INCLUDING INFORMATION ON THE MANUFACTURER’S WEBSITE. INSPECT YOUR BICYCLE BEFORE EVERY RIDE. ALWAYS WEAR A HELMET.

Getting Started

Proper suspension setup is important to get the most out of your Salsa Split Pivot suspension bike and preventing damage to the damper units, the frame, and/or yourself. Initially, setup should be performed at home or at your shop prior to heading to the trail. This will give you adequate time to properly set and check the shock and fork pressure as well as dial in the base damper settings. After initial setup, subsequent use of the bike will only require a quick air pressure check, and verification of the damper settings in addition to your normal pre-ride inspection.

Compatibility

This setup guide is for Salsa bikes featuring Split Pivot Technology.

Tools Required

- Bike with pedals
- Shock pump
- Measuring device (ruler, tape, or calipers)
- Riding gear (including hydration pack w/water, tool kit, and anything else you regularly carry)
- A clear space with a flat, firm floor
- Friend or a sturdy wall

Instructions

Step 1: Determine Target Sag

The recommended amount of sag for Salsa Split Pivot models is 30% of the rear shock stroke and 25% of the front fork travel. These amounts are listed in the following table in millimeters. Note the sag amounts for your particular bike model and record them in the “Goal” column of the table in Step 4.

<table>
<thead>
<tr>
<th>REAR SHOCK</th>
<th>FRONT FORK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Wheel Travel</td>
</tr>
<tr>
<td>Spearfish</td>
<td>80 mm</td>
</tr>
<tr>
<td>Horsethief/</td>
<td>120 mm</td>
</tr>
<tr>
<td>Rustler</td>
<td>100 mm</td>
</tr>
<tr>
<td>Bucksaw</td>
<td>150 mm</td>
</tr>
<tr>
<td>Redpoint</td>
<td>91 mm</td>
</tr>
<tr>
<td>Deadwood</td>
<td></td>
</tr>
</tbody>
</table>

Step 2: Set Initial Pressures

Knowing your riding weight isn’t necessary, but if you can estimate, it will help you get closer to the actual final pressure from the onset. This should help reduce the number of guess-and-check cycles needed to hone in on the actual final pressure settings that achieve the proper sag amount for your bike. To start, inflate the rear shock to a psi that is equal to your body weight in pounds. This pressure will not be accurate but is a good starting point. Record this pressure as “Press. 1” in the table in Step 4.

Step 3: Prep the Bike

Ensure tire pressure is adequate, set the saddle height to your normal riding position. Set any low-speed compression levers/adjusters on the rear shock and fork to the fully open setting. If performing this setup on your own, position the bike on a firm level surface next to a sturdy wall so that when you are on the bike, you can lean your near hand or shoulder lightly against the wall for balance. If performing this setup with a friend or your mechanic, have them straddle the front tire facing the bike and firmly hold the handlebars between the grips and stem, in order to balance you as you are on the bike.

Step 4: Check Rear Shock Sag

Climb on the bike, clip-in if needed, and bounce the rear suspension a couple times. Settle into a normal seated position. While remaining seated and still, push the o-ring on the shaft of the rear shock firmly against the wiper seal. Then carefully dismount the bike without further compressing the rear suspension. Using your measuring device, measure the distance between the seal and o-ring and record it below.

<table>
<thead>
<tr>
<th>SAG GOAL</th>
<th>Press. 1/ Sag 1</th>
<th>Press. 2/ Sag 2</th>
<th>Press. 3/ Sag 3</th>
<th>Press. 4/ Sag 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>REAR SHOCK</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>FRONT FORK</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
</tbody>
</table>
Step 5: Adjust Rear Shock Pressure

Compare the measured sag amount to the goal amount. If the measured amount is less than the goal amount, lower the pressure in the shock. If the measured amount is more, increase the pressure in the shock. Then repeat Steps 4 and 5 until the measured amount is the same as the goal amount. Note your final rear shock pressure. You can now use this pressure as your stock rear shock pressure before each ride without having to work through this process again.

Step 6: Check Front Fork Sag

With the rear shock pressure now dialed in, climb back on the bike and settle into a neutral standing position. Bounce the front fork a few times and remain in that neutral standing position. Slide the o-ring on the fork stanchion tube down flush against the wiper seal without further compressing the fork. Then dismount the bike towards the rear end to ensure the fork does not compress further. Note: It helps to lower or remove the seat for this step, as you don’t need it.

Step 7: Adjust Front Fork Pressure

Compare the measured sag amount of the fork to the goal amount. Like the rear shock, adjust the fork pressure up or down and repeat Steps 6 and 7 until the goal amount is reached. Note your final front fork pressure. You can now use this pressure as your stock fork pressure before each ride without having to work through this process again.

Lastly, please note that these pressure settings apply to you and the amount of gear you were wearing when you performed the setup. Riding with more or less gear/water will require you to adjust your rear shock and front fork pressures accordingly.

Rebound Settings for Rear Shock & Front Fork

Rebound settings will vary between riders. Rider weight, riding style, ability level, and terrain all dictate what settings should be used. Heavier riders require more air pressure in the rear shock unit and the front fork than lighter riders. Due to the higher internal pressure, larger riders generally need to use more rebound damping (+) than lighter riders to achieve the same return speed of the front and rear damper units that is appropriate to the terrain. The best way to hone in on your preferred rebound setting is to repeat a short section of choppy trail several times, adjusting the rebound in large chunks at first to find a zone that feels better than the others, and then make small adjustments to further hone in. Be sure to do this with any pedal or climb settings in the full open position. You want feel for the point where the bike feels “glued” to the ground, but doesn’t feel like the suspension is getting stiffer with each successive hit (packing up). If the bike feels loose and skittish, slow the rebound (+) if the bike feels great initially but then gets harsh after multiple bumps, open the rebound up 1 or 2 clicks (-). Be sure to always note the rebound setting as clicks from the full slow (+) position.

Low Speed Compression (LSC) Settings for Rear Shock & Front Fork

Like rebound damping, compression damping will vary based on rider, terrain, and style. Heavier riders create more mass transfer for a given acceleration, and therefore require more low-speed compression damping to counter act it. All the various shock makes and models spec’d on Salsa Split Pivot models feature some type of 2- or 3-position low speed compression setting. When paired with Split Pivot, we recommend using the open/unlocked setting (least amount of LSC) most of the time while riding due to the tuned anti-squat that is already built into the Split Pivot chassis. The linkage itself offers enough support for efficient pedaling with amazing small bump compliance in most situations. For rear shocks with a 3-position LSC setting, aggressive riders over 200 lb might find the middle (pedal) setting more appropriate. For most other riders though, we’ve found this setting is only needed for extended climbing. The third position (or second for a 2-position model), often referred to as locked or climb, features the highest amount of LSC. This setting is most useful for commuting to and from the trailhead on the road, or during long gradual climbs up relatively smooth trails and fire roads.